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On the Behavior of Solutions of a Class of Nonlinear
Partial Differential Equations
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The behavior of the steady-state (or the traveling wave) solutions for a class of
nonlinear partial differential equations is studied. The nonlinearity in these
equations is expressed by the presence of the convective term. It is shown that
the steady-state (or the traveling wave) solution may explode at a finite value
of the spatial (or the characteristic) variable. This holds whatever the order of
the spatial derivative term in these equations. Furthermore, new special solu-
tions of a set of equations in this class are also found.

KEY WORDS: Qualitative behaviors; a class of nonlinear partial differential
equations.

1. INTRODUCTION

We shall study the behavior of the solutions for a class of nonlinear partial
differential equations (NLPDE). These equations are characterized by the
presence of the convective term, the time derivative term and the spatial
derivative terms. The spatial derivative term may be diffuse, dissipative or
a linear combination of all orders. We model this class of NLPDE by

ut+*uux+F(uxx , uxxx , uxxxx ,...)=0 (1)

where F(v, w, q,...) is a linear functional in the arguments. We shall study
special cases of Eq. (1), namely

(i) When F=+uxx , Eq. (1) becomes

ut+*uux++uxx=0 (2)
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This equation had been introduced by Burgers(1) to model the viscosity
term in the Navier�Stokes equations by +uxx .

(ii) When F=+uxxx , Eq. (1) becomes

ut+*uux++uxxx=0 (3)

which is the Korteweg de Vries KdV equation. This equation describes the
propagation of waves in long channels.

(iii) When F=+uxx+&uxxxx , Eq. (1) becomes

ut+*uux++uxx++uxxxx=0 (4)

This is the Kuramoto�Sivashinsky KS equation. It describes the fluc-
tuations in the position of a front of a flame(2) or the evolution of a homog-
eneous medium unstable against a spatially uniform oscillating chemical
reactions.(3) Details on this equation may be found in ref. 4.

We shall present also a technique for finding some special solutions of
Eqs. (1)�(4). This technique has a common property with the method of
using the Painleve� analysis and auto-Ba� klund transformation for fining
some exact solutions of Eq. (1).(5�8) This common property is that we
should have an overdetermined system of equations. First, we clarify this
in brief for the Painleve� and auto-Ba� klund analysis. The Painleve� test
assumes that there exists a positive integer p such that Eq. (1) admits a
solution expansion in the form

u=:
�

0

uj (x, t) , j& p(x, t) (5)

where ,(x, t) is not one of the characteristics of Eq. (1) and uj (x, t) are
analytic functions in x and t. The positive integer p is found by an analysis
of leading terms in (1) and is given by p=n&1. When substituting from
(5) into Eq. (1), the resulting recursion relations must contain a sufficient
number of positive resonance besides that one at r=&1. If the solution (5)
contains a sufficient number of arbitrary functions uj (x, t) then Eq. (1)
passes the Painleve� test. A truncated expansion of (5) is done by assuming
that uj+ p=0, j=1, 2,.... Thus, the expansion (5) becomes

u= :
p&1

j=0

uj , j& p+up (6)
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We substitute from Eq. (6) into Eq. (1). If the equations obtained for
j=0, 1,... are consistent, then (6) is an auto-Ba� klund transformation for (1).
From the consistency of these equations, we find the following set of
equations.

up =G(,t , ,x , ,xx ,...) (7)

upt+upupx+F(upxx , upxxx ,...)=0 (8)

G0(,t , ,x , ,xx ,...)=0 (9)

The last Eq. (9) is called the invariance condition. In general, Eqs. (7)�(9)
form an overdetermined system of equations. But if Eq. (1) passes the
Painleve� test, this system is not overdetermined. That is when substituting
from (7) into (8), this gives rise to the Eq. (9) or to an equation derived
from it by differentiation.(7) This result can not be proved for Eq. (1) in its
implicit form and can be shown if (1) is given explicitly. A typical example
is the KdV equation. It passes the Painleve� test and possesses an auto-
Ba� klund transformation. But the system (7)�(9) for this equation is not
overdetermined. In this case the exact solution of (1) may be found by
using the inverse scattering technique(9) or by using the Lie symmetries.
If Eq. (1) does not pass the Painleve� test in the neighbourhood of arbitrary
singular manifold ,, we may search for a special manifold where this test
holds. In this case an auto-Ba� klund transformation may exist. Thus, the
system (7)�(9) is overdetermined and exact solutions of (1) may be fund by
using the technique introduced in ref. 8.

Analysis of resonances of the KdV and the KS equations shows that
they are at r=&1, 4, 6 and r=&1, 4, 8.(7, 10) By induction, the resonances
of Eq. (1) are at r=&1, 4, 2n. On the other hand, the condition that an
auto-Ba� klund transformation for Eq. (1) exists is rmax& p&1�3 where
rmax is the greatest positive integer. This condition reflects the fact that the
number of the overdetermined equations in , and up must not exceed three
(cf. Eqs. (7)�(9)). Analysis of this condition shows that it holds when n�3.
It is known that an auto-Ba� klund transformation does not exist for the KS
equation (n=4).(10) This drawback motivates one to search for other
techniques to find special solutions of Eq. (1) for n�4.

In the next section, we shall present a method that allows us to have
an overdetermined system of equations. When solving this system, we can
find some special solutions of (1). In Section (3), we apply this method to
Eqs. (2)�(4). In Section (4) we discuss the common behavior of these solu-
tions and give some conclusions and find the general form for a special
solution of (1).
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2. MATHEMATICAL FORMULATION

The idea, presented here, for finding an overdetermined system of
equations is to search for special solutions which satisfy the superposition
principle. Now, we assume that u1 and u2 are two solutions of (1), then we
have

u1t+u1u1x+F(u1xx , u1xxx ,...)=0 (10)

u2t+u2u2x+F(u2xx , u2xxx ,...)=0 (11)

The condition that u1+u2 is a solution of (1) is

u1 u2x+u2u1x=0 (12)

The system of Eqs. (10)�(12) is overdetermined. Fortunately, Eq. (12)
integrates to

u2=C(t)�u1 (13)

where C(t) is an arbitrary function. By substituting from (13) into (11), we
obtain

C4
u1

&
Cu1t

u2
1

&
C2u1x

u3
1

+CF \&u1xx

u2
1

+
2u2

1x

u3
1

,...+=0 (14)

By eliminating u1t from (14), we have

C4
u1

+
Cu1x

u1

+
C
u2

1

F(u1xx ,...)&
C 2u1x

u3
1

+CF \&u1xx

u2
1

+
2u2

1x

u3
1

,...+=0 (15)

Equation (15) contains only the spatial derivatives of the dependent
variable u and may be integrable. The solution of (15) would contain a set
of arbitrary functions in t. We insert this solution into (1) to find these
arbitrary functions.

3. APPLICATIONS

3.1. The Burgers Equations

Here, we apply the technique presented in the previous section to the
Eq. (2). We notice that by making a rescaling transformations, it is easy
to see that we can confine ourselves to the cases *=1 and +=\1. First,
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we consider the case *=1 and +=1 and when substituting into (15), it
becomes

C4
u1

&
Cu1x

u1

&
C2u1x

u3
1

+
2Cu2

1x

u3
1

=0 (16)

We notice hat Eq. (16) holds identically for C=0. When C is time inde-
pendent, (16) integrates to either u1=const. or to

u1={C1�2 tan chC 1�2[x�2+a(t)],
|C |1�2 tan |C |1�2 [a(t)&x�2],

C>0
C<0

(17)

where a(t) is an arbitrary function. When substituting from (17) into (2) we
find that a(t)=const. The two other solutions are

u2={C1�2 coth C1�2[x�2+a],
&|C1�2| cot[&x�2+a],

C>0
C<0

(18)

and u1+u2 . When *=1 and +=&1 in (2), calculations as in above give
rise to the solutions to (17) and (18) but with x replaced by &x.

We remark that the solutions of Burgers equation which satisfy the
superposition principle are the steady-state one. Also, the solutions which
contain the tangent function explode in a finite value of x, namely
- |C | (a&x�2) � \?�2. Thus the solution behaves as 1�(x&xo) in the
neighbourhood of xo=2a&(\?�- |C | ). It is worth noticing that the
traveling wave solution of (2) can be recasted into the steady state one by
a suitable transformation.

Now, we assume that C in (16) is time dependent, it solves to

u1x= 1
4 [(C&u2

1)\- u4
1&2u2

1(C+4C4 �C )+C2] (19)

Integration of (19) may be found. When substituting into (2), we find a tri-
vial solution which is a special case of (23), namely when Co=0. For this
reason, details of the calculations are omitted.

We remark that the solutions of (2) which satisfies the superposition
principle are the trivial ones. Now, we use the superposition principle in a
modifies sense. For instance, we assume that u2 satisfies (2) and u1 satisfies
only its dominant part, namely

u1 u1x+u1xx=0 (20)

The condition that u1+u2 is a solution of (2) is

u1t+(u1u2)x=0 (21)
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By direct calculations, we find

u1={
2

Co

(b+t)
tan ch

Co(x+a)
b+t

,

2
|Co |
b+t

tan
|Co |(&x+a)

b+t
,

Co>0

Co<0
(22)

u2={
(x+a)�(t+b)+8

C 2
o

(b+t)2 coth
Co(x+a)

b+t
, Co>0

(23)(x+a)�(t+b)&8
C 2

o

(b+t)2 cot
|Co |(&x+a)

b+t
, Co<0

(x+a)�(t+b), Co=0

where a and b are arbitrary constants. The solutions of Eq. (2) are u2 and
u1+u2 . We notice that these solution have not been found as classical
similarity solutions of the Burgers equation.(11)

3.2. The KdV Equation

We apply the technique developed here to the Eq. (3) and consider
only the cases *=1 and +=\1 for the reasons mentioned previously. For
*=1 and +=1, Eq. (15) becomes

C4
u1

+
Cu1x

u1

&
C2

u3
1

&6
Cu3

1x

u4
1

+6
Cu1xu1xx

u3
1

=0 (24)

Equation (24) holds identically for C=0. Now, we assume that C is time
independent, and (24) becomes

u3
1&Cu1&6u2

1x+6u1u1xx=0 (25)

By using quadratures, Eq. (25) integrates to

|
u1 dv

- &Cv&v3+Co(t) v2
=\x�- 3+C1(t) (26)

where Co(t) and C1(t) are arbitrary functions. Hereafter, we shall assume
that Co is a positive constant and we search for solutions of (3) which
satisfies

u1(0, t)= f (t) (27)
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In this case Eq. (26) becomes

|
u1

f (t)

dv

- &Cv&v3+Cov2
=\x�- 3 (28)

When substituting from (28) into (3) we find that the function f (t) satisfies
the equation

|
f (t)

f (0)

dv

- v(a&v)(v&b)
=�Co t�3 - 3 (29)

where a=Co �2+- C 2
o�4&C and b=Co �2&- C 2

o�4&C. Equation (29)
shows that the function f (t) is not arbitrarily chosen. When combining (29)
and (26), we obtain the solution for (3). We have the following cases

(a) For C>0 and f (0)=b, we find(12)

F(/, p)=\- a�12 (x&Co t�3)=z, /=sin&1 a(u1&b)
(a&b) u1

, p=�a&b
a

(30)

where F(x, y) is the elliptic integral of the first kind and a>u2�b>0.
Equation (30) solves to(13)

/=amz=?�2K( p)+ :
�

s=0

2qs sin(?zs�K( p))
s(1+q2s)

(31)

where q=e&?K$( p$)�K( p) and K( p) is the complete elliptic integral of the first
kind. Finally we have

u1=
ab

a&(a&b) sn2(z | p)
(32)

where sn(z | p) is the Jacobi elliptic function. The two other solutions are

u2=C�u1 , u=u1+u2 (33)

The results (32) and (33) are displayed in Fig. 1 for C=1 and Co=2 - 2.
The lower, middle and upper curves represent the solutions u1 , u2 , and
u1+u2 respectively. This figure shows the fact that the solutions (32), (33)
are doubly periodic functions.

(b) For C<0 and f (0)=0, we find that the solution of (3) is

u1=acn2(z* | po) (34)
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Fig. 1. Solutions given by the Eqs. (33) and (34). The lower, middle and upper curves
correspond to the solutions u1 , u2 , and u1+u2 respectively.

where z*=\- (a+b)�12 (x&Cot�3), po=- (a+b)�a and a>u1>0>b.
The two other solutions are

u2=C�u1 , u=u1+u2 (35)

The solutions given by (34, 35) are displayed in Fig. 2 for C=&1 and Co=
2 - 2. The upper, middle and lower curves represent the solutions u1 , u2 , and
u1+u2 respectively. After this figure, the solutions u2 and u2+u1 � &� for
finite values of z*. This occurs in a doubly periodic manner.

Fig. 2. Solutions given by the Eqs. (35, 36). The upper, middle and lower curves correspond
to the solutions u1 , u2 , and u1+u2 respectively.
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(c) For C=0 and f (0)=0, we find that

u=Co sec h2 �Co

3
(x&Co t�3) (36)

This solution for the KdV equation is known as the single soliton solution.

Now, we turn to the case when *=1 and +=&1 in (3). When C=0
and f (0)=0, we find that

u1={
Co sec h2 �Co

3
(Co t�3&x),

|Co | sec2 �|Co |
3

(x+|Co t|�3),

Co>0

Co<0
(37)

From (37), and for Co<0 we remark that the solution of the KdV
explodes as z+- |Co |�3(x+|Co | t�3) � \?�2. Thus, the solution given by
(37) explodes whenever the variables x and t lie on the characteristics
(x+|Co | t�3)= pm? - 3�4 |Co |. This behavior for the solution of the KdV
equation holds only when *=1 and +=&1. It does not hold when *=1
and +=1.

In (24) when C is time dependent, by using the transformation
ux=hu, it becomes an Abel equation on the first kind.

3.3. The KS Equation

It has been shown that the KS equation is not integrable.(14) It does
not pass the Painleve� test and an auto-Ba� klund transformation for this
equation does not exist.(10) Consequently, no special solutions are found by
using the technique of Conte.(8)

We apply the technique presented in Section (2) to the Eq. (4) for
*=+=&=1. In this case, Eq. (15) becomes

C4
u1

+
Cu1x

u1

&
C2u1x

u3
1

+
2Cu2

1x

u3
1

+
8Cu1xu1xxx

u3
1

+6
Cu2

1xx

u3
1

&36
Cu2

1xu1xx

u4
1

+24
Cu4

1x

u5
1

=0 (38)

Unfortunately, it is difficult to solve Eq. (38) exactly even though C=const.
We use the ``modified'' superposition principle and assume that u1 is a solu-
tion of the equation

u1xx+u1 u1x+u1xxxx=0 (39)
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and u2 satisfies Eq. (4). The condition that u1+u2 satisfies also (4) is given
by (21). After the results found in this section, one can inspect easily as
special solution of (39). We have found that if the term uxx (or uxxx) is pre-
sent in (1), then its solution will contain the term tanhz (tanz) (or tanh2 z
(tan2 z)) respectively. This may bee seen from the solutions of the Burgers
and KdV equations. Thus, as uxxxx is present in (39), then its solution will
contain tanh3 z (tan3 z). Here, z may designate the characteristic variable
(or z=C(t) x+D(t)). By inspection, the presence of a linear combination
of the spatial derivative terms give rise to a linear combination of tanhm z
(tanm z). This suggests to writing the solution of Eq. (39) in the form

u1=A(t) tanh(C(t) x+D(t))+B tanh3(C(t) x+D(t)) (40)

where A, B, C, and D are arbitrary functions in t. The solution (40)
satisfies the integrated form of (39), namely

uxxx+
u2

2
+ux+K(t)=0 (41)

where K(t) is an arbitrary function in t, when the following equations hold

B2&120BC 3=0

6C3(9B&1)+60BC 3&3BC+AB=0 (42)

C 3(8A&60B)&CA+3BC+
A2

2
=0

2C3(2B&A)+AC+K=0 (43)

Equations (42) and (43) solve to

A=
60
57

C(3&114C2), B=120C3, C2=11�76, C2=&1�76 (44)

The condition that u1+u2 is a solution of (4) is

u1t+(u1u2)x=0 (45)

where u2 satisfies (4). By taking u2=Do=const and substituting from (40),
(41) into (42) we obtain

C4 +DoC=0 (46)
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Finally, we have a solution for (4) which is given by

u=u1+u2=Do+u1 (47)

where in (40), D(t)=&CDo t+D1 ; Do and D1 are constants.
When Do=D1=0, the solutions (40), (44), and (47) becomes the

Kuramoto�Tsuzuki solution.(15) When C2=&1�76, this solution becomes

u=
&5
193�2 (3 tan |k| x+tan3|k| x), |k|=1�- 76 (48)

Now, after (48), the solution of the KS equation blows up to infinity as
|k| x � \?�2. Thus, by maintaining only the dominant term in (48), we
find that ur(x&xo)&3 where xo=? - 19. This result holds also when
(*, +, &)=(1, 1, &1).(16) After the results of this section, we conjecture that

(i) In Eq. (1), if the maximum order of the spatial derivative term is
even, then it possesses a solution which explodes in a finite value for the
spatial (or the characteristic) variable whatever the coefficients *, +, &,... etc.
But if the maximum order is odd then the solution explodes only if the
coefficients of the convective and spatial derivative terms are of opposite
signs.

(ii) The power of ``explosion'' depends on the maximum order of the
spatial derivative term in (1).

We shall prove these conjectures in the next section.

4. DISCUSSIONS AND CONCLUSIONS

We have presented a method that allows us to find some special solu-
tions of Eq. (1). New special solutions for the Burgers and KdV equations
have been found. We have also shown that (1) possesses a solution which
explodes in a finite value of the spatial or the characteristic variable. This
occurs according to the statements (i) and (ii) in the above. We have
demonstrated that these two statements hold for the Burgers, the KdV and
the KS equations. Here, we shall prove these two statements in the general
case for (1). To this end, we consider the canonical forms of Eq. (1) when
n is even and odd respectively,

ut+*1uux++1

�2mu
�x2m=0 (49)

ut+*2uux++2

�2m+1u
�x2m+1=0 (50)
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Now, we search for the traveling wave solution with characteristic variable
z=x&ct for Eqs. (45) and (46) and they become

&cu$+*1uu$++1u(2m)=0 (51)

&cu$+*2 uu$++2u(2m+1)=0 (52)

where the prime denotes the derivative with respect to z. Equations (47)
and (48) are integrated to

&cu+
*1

2
u2++1u(2m+1)+K1 =0 (53)

&cu+
*2

2
u2++2u(2m)+K2=0 (54)

By making the transformation (u&c�*j ) � u and if we choose
Kj&c2�*2

1=0, then Eqs. (53) and (54) become

*1

2
u2++1 u(2m&1)=0 (55)

*2

2
u2++2u(2m)=0 (56)

If Eqs. (55) and (56) admit particular solutions in the form u$=:ur, r>1,
then these solutions explode in a finite value of z. In order that these solu-
tions existed, two conditions must hold; r>1 and : is real. In fact, r=2m�
(2m&1) and r=1+1�2m corresponding to Eqs. (55) and (56) respectively.
For the second condition, we require that the solution of the following two
equations in : is real;

*1

2
++1(2r&1)(3r&2) } } } (2m(r&1)+3) :2m&1=0 (57)

*2

2
++2(2r&1)(3r&2) } } } ((2m+1) r+3) :2m=0 (58)

Equation (57) solves to a real value of : whatever the signs of *1 and +1 .
But a solution of (58) for : exists only if *2 and +2 have opposite signs.
This proves the first statement. To show that the second statement holds,
we assume that the two conditions mentioned above are satisfied. That is
u$=:ur, r>1. Thus, we find that Eqs. (55) and (56) have special solutions
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which explode as (;1&(:1 �2m&1) z)2m&1 and (;2&(:2 �2m) z)2m respec-
tively. The statement (i) in above is not surprising because in (49) we can
always make *1 and +1 have the same sign by the transformation x � &x.
But this is not the case for Eq. (50).
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